Implementation and Performance Evaluation of Acoustic Denoising Algorithms for UAV
نویسنده
چکیده
.................................................................................................................................. iii ACKNOWLEDGMENTS ............................................................................................................. iv LIST OF TABLES ......................................................................................................................... vi LIST OF FIGURES ...................................................................................................................... vii CHAPTER I: INTRODUCTION .................................................................................................... 1 1.1 Overview ............................................................................................................................... 1 1.2 Motivation ............................................................................................................................. 3 1.3 Objective ............................................................................................................................... 4 1.4 Organization of Thesis .......................................................................................................... 5 CHAPTER II: BACKGROUND AND LITERATURE REVIEW ................................................ 6 2.1 Audio Signal ......................................................................................................................... 6 2.2 Noise ..................................................................................................................................... 7 2.3 Audio Denoising Algorithms ................................................................................................ 8 CHAPTER III: DENOISING ALGORITHMS ............................................................................ 17 3.1 Least Mean Square .............................................................................................................. 17 3.2 Discrete Wavelet Transform ............................................................................................... 18 3.3 Wiener Filter ....................................................................................................................... 20 3.4 Block Thresholding Algorithm ........................................................................................... 21 3.5 MFCC Feature Extraction .................................................................................................. 24 3.6 SVM Classification ............................................................................................................. 25 3.7 Naive Bayes Classification ................................................................................................. 27 CHAPTER IV: IMPLEMENTATION ......................................................................................... 28 4.1 Software Implementation .................................................................................................... 28 4.2 Hardware Implementation .................................................................................................. 32 4.3 Classification Implementation ............................................................................................ 36 CHAPTER V: RESULTS AND DISCUSSION ........................................................................... 42 5.1 Simulation Results .............................................................................................................. 42 5.2 Hardware Test Results ........................................................................................................ 49 5.3 Classification Results .......................................................................................................... 56 CHAPTER VI: CONCLUSION ................................................................................................... 59 Appendix A. List of Abbreviations and Acronyms ...................................................................... 60 Appendix B. Classification Results .............................................................................................. 61 Appendix C. Graphical Representation of Classification Results ................................................ 69 REFERENCES ............................................................................................................................. 73 Curriculum Vitae .......................................................................................................................... 77
منابع مشابه
Quadrotor UAV Guidence For Ground Moving Target Tracking
The studies in aerial vehicles modeling and control have been increased rapidly recently. In this paper , a coordination of two types of heterogeneous robots , namely unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) is considered. In this paper the UAV plays the role of a virtual leader for the UGVs. The system consists of a vision- based target detection algorithm that uses the ...
متن کاملComparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images
Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...
متن کاملA Bayesian approach for image denoising in MRI
Magnetic Resonance Imaging (MRI) is a notable medical imaging technique that is based on Nuclear Magnetic Resonance (NMR). MRI is a safe imaging method with high contrast between soft tissues, which made it the most popular imaging technique in clinical applications. MR Imagechr('39')s visual quality plays a vital role in medical diagnostics that can be severely corrupted by existing noise duri...
متن کاملModel Predictive Controller Design for a Novel Moving Mass Controlled Bi-rotor UAV
This paper presents design and implementation of Model Based Predictive Controller (MPC) for a novel Bi-Rotor Moving Mass Controlled (MMC) Unmanned Aerial Vehicle (UAV). Due to the strict constrained control inputs in this type of UAV, it is necessary to take into account the constrained controller design and un-constrained control methods are not applicable. MPC controller which is designed ba...
متن کاملA COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کامل